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The evolution of travelling waves from chemical-clock reactions
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Abstract. A clock-reaction is a chemical reaction which gives rise to an initial induction period before a significant
change in concentration of one of the chemical species occurs. In this paper the development of travelling waves
from a particular class of inhibited autocatalytic clock-reactions is analysed. The numerical solutions show that,
after the induction period, a propagating reaction-diffusion front is initiated. This front is seen to accelerate initially
and then to become a constant-speed travelling wave. An asymptotic analysis of the large-time travelling-wave
behaviour is given and from this it is possible to fix a minimum wave speed. The asymptotic predictions of the
wave speed are found to agree well with those of the numerical solution.
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1. Introduction

Propagating reaction-diffusion fronts were first considered by Luther [1] over 80 years ago and
a mathematical formulation was first carried out by Fisher [2] and analysed in more detail by
Kolmogorovet al. [3]. Since the work of Merkin and Needham [4] on a simple autocatalytic
chemical system much research has been published relating to the development of travelling
waves. In this paper we analyse the development, in an unstirred medium, of a class of reaction
schemes which is known to give rise to clock-reaction behaviour and are able to demonstrate
the existence of travelling waves.

A reaction is regarded as displaying clock characteristics if, after the initial mixing, a sig-
nificant induction period is observed before a rapid change in one of the product or reactant
concentrations occurs. Such reactions often give rise to observable phenomena at the end
of the induction period. Examples of clock-reactions include the arsenic(lll) sulfide clock-
reaction [5], the formaldehyde clock-reaction [6], the iodine bisulphate clock [7] and the
hydration of carbon dioxide [8]. In this paper we consider two mechanisms which can give
rise to clock-reaction behaviour. The first is simple autocatalysis, which can be described as
an induction reaction. An example of such a scheme is,

A+nB — (n+ 1B, ratekab”, Q)

where lower-case letters denote the respective chemical concentratioksisaadeaction-

rate constant. Examples of solution-phase reactions which are thought to be well modelled by
cubic autocatalysis are the iodate-arsenous acid reaction [9] and the iodine-bisulphate clock-
reaction [10, pp. 54-56]. Another mechanism which can lead to clock-reaction behaviour
is,

P — B, ratekop,
B+ C — D, ratekqbc,
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which can be described as an inhibition reaction. The clock chemical, B, is supplied to the
system via the decay of the precursor chemical P. An inhibitor chemical, C, reacts with
the clock chemical limiting its concentration. Once the inhibitor chemical is consumed the
concentration of the clock chemical starts to increase. This system has been analysed mathe-
matically in a well stirred situation by Billingham and Needham [11]. Examples of reactions
which are thought to be well modelled by this mechanism are the photosynthesis of hydrogen
chloride inhibited by ammonia and the polymerisation of vinyl acetate by benzoquinone [12].
In this paper we analyse the behaviour of the system,

P—s A, ratekop, 2)
A+nB — (n+1)B, ratekiab”, 3
mB+C — D, ratekob" c, 4)

for the casea = m = 1, 2. This system was first analysed by Billingham and Needham [13]
who assumed the decay of the precursor to be negligible. Using asymptotic methods, they
were able to obtain expressions for the length of the induction period in each case.d®aece
[14] extended this work to allow for the consumption of the precursor chemical. They obtained
modified expressions for the induction period and showed that clock-reaction behaviour was
only observed within certain parameter limits.

In the first part of this paper numerical solutions are presented which show that, when a
clock-reaction is initiated with localised initial conditions, the rapid growth in concentration
of autocatalyst sets up a propagating reaction-diffusion front. After an initial transient phase
in which the reaction front accelerates, a constant-speed travelling wave is seen to develop.
Using asymptotic methods, we construct a large-time travelling-wave solution for the cases
n = m = 1,2 and are able to fix a minimum wave speed in each case. Our asymptotic
predictions of wave speed are found to agree well with those of the numerical solution.

2. Mathematical formulation

We formulate the problem for = m = 1 or 2 settingn = n and choose to study the case of
one-dimensional slab geometry with the diffusion coefficients of the chemical species equal.
From reaction scheme (2), (3), (4) we obtain the partial differential equations,

op 82p

— = D— —kop, 5
o1t ox2  oF ®)
da 9%a

— = D— +kop — kyad" 6
o7 552 +Kkop — kaab”, (6)
ab 3%b . .

E = Dﬁ—i_klab —I’lkzb C, (7)
ac 9%c

— = D— — kyb"c, 8
o1 ox2 2 € ®

which are to be solved subject to the initial conditions,
p(x,0 = po,
a(x,00 = 0O,
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c(x,0) = co.

These conditions describe an initially uniform concentration of precursor and inhibitor chem-
ical and an initial top hat distribution of the autocatalyst of half witltke impose no flux
boundary conditions on all chemical species at infinity. As no spatial variation will occur in
the precursor concentration, Equation (5) can be integrated to give

p = poe . (10)
We define dimensionless variables as

) klb(')' 1/2

a=a/by, PB=b/by, yY=c/by, x= D X, T=k1b8t, (1D
and Equations (6), (7) and (8) reduce to

oo 9%

- - = —€0dT __ n 12

d'C 8x2 + Me (XB ’ ( )

ap 3%p n

L n__ "‘an ’ 13

1o = a2 T By (13)

ay %y 1

<4 = L _ g 14

pElialiey R e (14)
where the parametets, 5 andp are defined as

ko k]_ . Po
=—) d=—, =ePy, with Py==—. 15

‘ kibg kb T ° 7 by (15)
These equations must be solved subject to the initial conditions

a(x,0 = 0,

_J1 x < |g|

b0 = {5 IR (16)

y(x, 0 = A,
where,

D \}
=D e l. (17)
bo kybl,

Py and are the dimensionless initial concentrationsPadndC, respectively. The parameters

e and 154 are measures of the reaction rate of steps (2) and (4), respectively, relative to the rate
of the autocatalytic step (3). The diffusion coefficient has been scaled out of the governing
eqguations and we have retained the imposed length scale in the initial conditions via the para-
meterg. It has been shown by Billingham and Needham [13] that in a well stirred environment
the length of the induction period is @f (5~1) for the cases = 1, 2. We choose to consider

the smalld situation, in which

€e=¢d ¢=0(1) as 33— 0 with p=0(0Q). (18)

This ensures that the effect of precursor consumption is significant at the time of initiation of
the reaction-diffusion front and produces interesting phenomena which are described in the
next section.



370 S. J. Preece et al.

3. Numerical solution

We now present a numerical solution of Equations (12), (13) and (14) for the case&

andn = 2. We need consider only the regian> 0 as we have imposed initial conditions
which are symmetric about = 0. To solve the equations we apply the boundary conditions
da/dx = df/0x = dy/dx = 0 atx = 0 and we note that there will be another symmetrically
disposed solution in the region < 0. We apply no flux boundary conditions at some large
value of x, typically x = 500, as the system will tend to its unreacted spatially uniform
state at large distances from the origin. The numerical scheme used is the method of lines.
We discretise inx by replacing the spatial derivatives with second order central-difference
approximations. This gives the three sets of ordinary differential equations,

80(,- 1

9T W [Oli+1 — 20; + 0‘1’71] + pe 0T — By, (19)
86[ 1 n m . m

T A2 [Bi+1 — 2B + Bi—1] + i} — gﬁi Vi (20)
8y, 1 1

Bt T (B2 [vite —2vi +via] - gﬁi Vi (21)

fori =0,1,2, 3,..., N and wherey;, B; andy; represent the values of f andy at time=
and distancé Ax from the origin. The outer boundary conditions are givenas; = ay,1,
By_1 = Bni1, YN_1 = Yn+1 and similarly the boundary conditions at the origin are = a4,
B_1 = B1, Y_1 = v1. To solve the above set of coupled nonlinear ordinary differential equa-
tions we used the NAG DO2BBF fourth-order Runge Kutta scheme. A spatial step size of
Ax = 0-025 was used and the Runge-Kutta scheme had a variable step size. It was necessary
to use a scheme which was fourth-order accurate in time to capture the rapid growth in concen-
tration, characteristic of clock-reaction behaviour. When the spatial step size was halved the
results remained consistent to within the excepted accuracy of the scheme. The outer boundary
conditions were applied at large distances from the origin so that the propagating wave profile
could be given sufficient time to develop.

The solutions for the cases = 1 andn = 2 display very similar characteristics and
so we present the two sets of results together. Figure 1 shows how the concentration of the
autocatalyst varies during the early stages of the reactiorn. At 0 the concentration of
the autocatalyst3, is zero everywhere apart from a unit step function of half wigd#ibout
the origin. As the reaction proceeds, diffusion smooths out the initial step function in the
neighbourhood ok = & and a spatially uniform decay occurs in the vicinity of the origin.
The autocatalyst is consumed because it reacts with the inhibitor chemical. At later times the
distinction is lost between the region of spreading and that of spatially uniform decay. The
autocatalyst continues to decrease in concentration and remains monotonically decreasing
from its maximum at the origin to zero at infinity.

We now enter the induction period where the autocatalyst concentration remains small and
inhibitor from outside the regiofx| < & diffuses inwards to replace consumed inhibitor.
The concentratior continues to increase everywhere because of the decay of the precursor
chemical. At some time later the autocatalyst concentration stops decreasing and starts to
grow. Inhibitor chemical is consumed in the region around the origin and there is then a very
rapid growth in the concentratighand a corresponding decrease in the concentratidine
rapid growth in autocatalyst concentration is illustrated in Figure 2.
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Figure 1. Initial decay of the autocatalyst for the case- 2 withp =5, = 1,¢g = 1,& =1 andd = 0-2.
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Figure 2. Rapid growth of the autocatalyst for the case- 2 withp =5, A =1,¢g = 1,§ = 1 andd = 0-2.

At approximatelyt = 5-9 we begin to observe the development of a wave indicated by a
spatially uniform region in the vicinity of the origin followed by a sharp decgy.iBehind the
profile we find that the concentration of the inhibitor chemical and chemical A have decayed
to become very small.

The evolution of the wave profile for the case= 2 is shown in Figure 3. For reasons
of clarity we have shown only the autocatalyst concentrations. The wave profile is observed
to both propagate away from the origin and grow as time increases. The growth corresponds
to an increase in the concentration of the autocatalyst behind the wave and an increase in the
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Figure 3. The evolution of the reaction-diffusion front for the case- 2 withp = 5,x =1,¢g = 1,§ = 1 and
d=02.

concentration of A in front of the wave. The increasexiin front of the wave is due to the
decay of the precursor and behind the wave A reacts with B via autocatalysis to produce more
B, hencef also increases. Once the precursor chemical has decayed fully, the growth of the
wave stops and we find that the wavefront travels the same distance during each period of four
time units, indicating that it is travelling with constant speed.

Figures 4 and 5 show the structure of fully developed travelling-wave profiles for the cases
n = 1 andn = 2, respectively. Behind the wavefront all the inhibitor has been consumed and
the system is in a fully reacted state. Ahead of the wavefront the solution is in an unreacted
state with = 0, y = \ anda being a spatially uniform constant which tends towargdé(8)
as the decay of the precursor continues. All the reaction processes are taking place in the
centred region whose boundary is propagating away from the origin. We note that the width
of the region for the case = 1 is considerably larger than for the case- 2.

To investigate the speed of the wave profile it was necessary to determine the position
of the front at each time step. This was defined to be the value aifwhichdg/dx took
its minimum value. By considering the position of the wavefront at timeand the position
two time increments earliet,— 2At, the wave speed was calculated via a central-difference
approximation. A value oAt = 0-25 was used throughout. The results for the cases1
andn = 2 are shown in Figures 6 and 7, respectively.

The intersection of the curve with the horizontal axis marks the end of the induction period
and there is then a sharp jump associated with the initiation of the reaction-diffusion front.
The wave speed is then seen to increase to its maximum value.

For the case = 1 the numerical results suggest that the final steady wave speed varies
like 3~1/2 but for the caser = 2 the they suggest the final wave speed to vary $ikk In
the asymptotic analysis we show that these assumptions must be made for us to construct
asymptotic solutions.
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Figure 4. Travelling-wave profile for the case= 1 withp =5,x = 2,¢g = 1, = 1 and 3= 0-2.

We note that the numerical results indicate that a constant-speed travelling-wave is ob-
served only once the precursor has fully decayed. This implies that the concentration of
chemical A ahead of the wave is the factor which controls the speed of the wave. Such results
have also been found by Merkin and Needham [15] who studied a similar system which had
a decay step instead of an inhibition step.

4. Travelling-wave analysis

After initiation of the reaction-diffusion front the numerical solution suggests that the govern-
ing equations will admit a solution of the form,

y=x-0(v. 22)

For small times after the end of the induction period, Figure 3 indicatesothat O (t?),

wheren > p. Indeed, it has been shown by Merkin and Needham [15] that, for a cubic
autocatalytic system which has a decay step rather than an inhibition step, the wavefront is an
O (1) distance away from the origin when the precursor chemical is assumed to decay slowly.
Further investigation shows that the governing equations have a constant-speed travelling-
wave solution when the precursor concentration become small, that is thab (t) when

e « 1. In this limit both the concentration of chemical A ahead of the front and the
concentration of the autocatalyst behind the front become constant, as shown in Figures 4 and
5. We now analyse the behaviour of the system in this limit and fix the similarity variable

as,

y=Xx—cCT, (23)

wherec is the constant speed of the propagating reaction-diffusion front.
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Figure 5. Travelling-wave profile for the case= 2 withpn =5, = 1,¢g = 1, = 1 and 3= 0-2.

4.1. FORMULATION OF THE TRAVELLING-WAVE PROBLEM

If we neglect the input of A from the precursor chemical and apply the change of variables
(23) then Equations (12), (13) and (14) become,

ayy +cay, —apf” =0, (24)
1
Byy + cBy +ap” — gﬁny =0, (25)
n
Vyy tCVy — gﬁ”v =0, (26)

where subscripy denotes differentiation with respect 9 the travelling-wave coordinate.

For the purpose of this analysis we assume that the parametans v are of O(1). The
boundary conditions ahead of the wave are those of the unreacted state: there is no autocatalyst
present, the concentration of the inhibitor is constantahds grown to its maximum value

via precursor decay so that,

0(—)1, B—0, yv—, (27)
E()S
asy — oo. Figures 4 and 5 show fully developed constant-speed travelling waves. It can
be seen that ahead of the travelling waves, condition (27) is satisfied and that behind the
wavefronts both the concentrationsandy are small, possibly zero, arfdtakes a constant

value. If we now consider the variabledefined as,
(l):()(—‘,—B—I’I,’Y, (28)

then addition of Equations (24), (25) and (26) shavto satisfy the ordinary differential
eqguation,

By + cdy = 0. (29)
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Figure 6. Wave Speed as a function of time for the case= 1 withp = 5 X = 2,¢g = 1,€ = 1 and
3 =02, 025, 0-3

Applying the boundary conditions as— oo we obtain,
b= _m. (30)
605
Equations (24), (25) and (26) show that for steady-state conditionsxmdy must be zero
for B non-zero, hence from (28) and (30) we deduce the conditions behind the wave to be,

a— 0, B—)i—n)\, y — 0, (31)
606

asy — —oo. We are now able to eliminatefrom Equation (25) and thus obtain the fourth-
order system,

Oyy + cay, —ap” =0, (32)
n k
Byy + By +ap” — gﬁn (OL +B - g) =0, (33)
subject to the boundary conditions,
k
0L—>g+n)\, B— 0, y — 00, (34)
k
a— 0, B—)E, y —> —00, (35)
where
W
k= — —3n\. (36)
€0

As this system is four dimensional it is difficult to use phase-space techniques. In the fol-
lowing sections we present asymptotic solutions validdfex, 1 for both cases. To construct
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Figure 7. Wave speed as a function of time for the case= 2 with . = 5, % = 1,¢g = 1, = 1 and
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these solutions we use information from the numerical solution of the initial-boundary-value
problem to pose suitable expansions for the wave speed.

4.2. QUADRATIC AUTOCATALYSIS WITH LINEAR INHIBITION (n = 1)

Solutions are required to Equations (32) and (33) wita 1 subject to boundary conditions
(34) and (35), wheré is defined as,

k=2 s 37)
€0

The results in Figure 6 suggest that the final wave speed (Q(&f%), hence we pose an
expansion of the form,

co
c——

= 81/2 —|—Cl+0(l). (38)

The structure of the smallasymptotic solution is shown schematically in Figure 8 and can
been seen to consist of four asymptotic regions. Behind the wavefront, exponentially small
corrections to the boundary condition are constructed. When developed, these solutions show
the need for a further asymptotic region in which betndp are ofO (§~1). Consideration of
the system ahead of the wave also shows corrections to the boundary condition to be exponen-
tially small. A further asymptotic region is then required to link these solutions into the central
asymptotic region, region Il, in which both andp are of O(§71). This central region has
width of 0(6%) and contains the equation for the travelling-wave solution the Fisher problem
at leading order. We now give a description of the asymptotic structure of the full solution.



The evolution of travelling waves from chemical-clock reactidig7

RI RII RIII RIV
o=e.s.t. E a=0@") E o=k/8+0(§' )E o=K/§+A+e.s.t.
B=kg+est. | P=0@') | P=est v P=est
y=0(l) L y=y-06") 1 y=0@" 1 y=0()

. : . )
1 : B
y

008"

Figure 8. Schematic diagram showing the asymptotic structure of the travelling-wave solution for thecake
Exponentially small terms have been denoted by e.s.t.

Region I
For consistent asymptotic expansions to be developed we require exponentially small correc-
tions to boundary conditions (35). Appropriate scalings are thus,

a=32loga=0(), p=232log <§ - B) =00, y=y=0Q), (39)

and by assuming appropriate expansions we obtain, in terms of the unscaled variables, the
solutions

o = AQ) exp(¥ __aw )(1+o(1)), (40)
52 2\)+Co
_ Kk Yy _avy
B = 5 A(S)exp(B% 2\)+CO> <l+o(l)>, (41)

wherev is given by,

2+ 4k
y=_S V0 7 (42)
2 2

and A(8) is a constant of integration. Expansion (41) becomes non-uniform when the expo-
nentially small term grows to become 6f(3—1). This occurs when,

31/ 1
y=- log (m) , (43)

and suggests that a new asymptotic region is required in whichooariap are of O (871).
We now construct a solution in the region ahead of the reaction front.

Region IV:
It is not immediately obvious what form the scalings should take for this region so we pose an
asymptotic expansion of the form,

k - ~
a=ghhtdto =Pt (44)
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with y = § = 0(1) and wheréi <« 1 andp < 1. If we now substitute in Equations (32) and
(33) and linearise we obtain,

- k ~

55 + (5775 + 1) & (g + x) B~o0, (45)

. k o~

By&-i-(W—i-cl) By + ( -H)B 3P0 (46)
Equation (46) has a solution of the form,

. 0,7 0_7

B ~ b1(3) exp 512 /2 + ba(8) exp 512 (47)
whereb, andb, are gauge functions and,

1
0. = > (—co + /3 — 4k — x)> . (48)

Substituting this result in Equation (45) and solving we have,

@~ @) + ) exp(%)

k k 0_y
()iwmeli) (1) somn(sc)

ﬁ n C06+ i n Coe_o
) d ) d

We note that the gauge functiofig(3), a,(3), b1(5) andb,(8) are completely undetermined at
present. Consideration of Equation (49) shows that whea O (8¥/?) expansions (44) may
become non-uniform. We now choose to examine the behaviour of the solution in this limit
by considering the scaled variable,

_l’_

(49)

7 = 8%2y. (50)

Rewriting the governing equations in terms of the variablee obtain,
0(5,5, OL
5+ (2 + 1) oz — o =0 5D
By By p kY
BE g (sgp o) gos tob— ¢ (atB-3) =0 (52)

If we now pick all the gauge functiond, (3), d(3), b1(8) andb,(3), to beO (1), then we find
that appropriate expansions are,

a=§+&+o(1), B=F+o(). (53)

To examine these new scalings we introduce a further asymptotic region.
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Region I
Again the exact form of the scalings is not clear at present so we pose expansions (53) and
scaley as,

y =82y, (54)
Equations (32) and (33) become, at leading order,

&y5 + codty — kP = 0, (55)

Bss + coby + kB — P@+p) = 0. (56)

These equations admit solutions of the form (47) and (49) and hence match with the solutions
in region IV asy — oo. It is not possible to obtain fully analytical solutions of Equations
(55) and (56) valid for ally, so we try to obtain the behaviour of the systemyas> —oo.
Equations (55) and (56) linearise if we choase= —f and the resulting system is easily
solved to give,

a = —l;lec+y — l;zeg—y, (57)
B = bi€+ + b7, (58)
where,

Ly = _% <c0 + /2 - 4k> . (59)

We now show, via a numerical integration, that this is the behaviour of Equations (55) and
(56) asy — —oo. We accomplished the integration by discretising the two equations with
respect toy and then solving the resulting set of nonlinear equations using the NAG routine
CO5NBF. To obtain boundary conditions §s— oo we use the matching conditions from
region IV and fix,

d=% PB=0, (60)

hence we neglect terms which are exponentially smallyAs> —oco we ensure that the
solution is of the linearised form discussed above and fix,

G = —e+) — b7, (61)
B = &+ 4 boet. (62)

The travelling-wave solution is invariant under a shift in the travelling-wave coordinate,

so we can seb; = 1 for the purpose of our numerical solution. Different values of the
parameters were used, within the parameter regine 2v/k which ensures that, is real,

and the scheme was found to converge each time. Changing the point at which the solution
was truncated had no effect on the overall solution. Figure 9 shows such a solution of Equa-
tions (55) and (56) subject to the boundary conditions described above. It can be observed that
a andp decay from being exponentially large s> —oo to becomeéx and 0, respectively, as

y — o0. We conclude that the linearised behaviour of Equations (55) and (56) is the behaviour
asy — —oo. In terms of the original variables these linearised solutions are written as,

o ~ k — by _ g/ (63)
B ~ bye+ g ey, (64)
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Figure 9. Numerical solution of Equations (55) and (56).

Expansion (63) becomes non-uniformyas> —oo in particular when,
y =——>Ilogs. (65)
This suggests a new region in whierandp are 0 (371).

Region Il:
This region is the central region and matches to region Ifl as co and regionlag — —oc.
Appropriate scalings are,
A — yo(®
G=sa=0@1), Pp=%p=o0@1), 5= ygl—y/g” — 0. (66)
For consistent matchingy(8) must be the same when evaluated in region | and in region lll,
giving the relation,

81/2 81/2
yo(®) = i~ log[3A(®)] = — c

log s, (67)

+

must be satisfied. Under scalings (66) Equations (32) and (33) become,

G35 + (co+8Y%c1) 65 — 6B = 0, (68)

. ~ o oAfa Bk

Byy-i—(co-i-?il/zcl)ﬁf-i-aﬁ—ﬁ(g‘i‘%—g) =0, (69)
which at leading order take the form,

Qo + codlo; — Gloo = O, (70)

8o + Bo = k. (71)

Elimination ofag gives the two-dimensional system,

Bo,; + coPo, — o (Bo - k) =0, (72)
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Table 1.Comparison of the analytical minimum wave speed and the numerical
estimate for the case= 1 withp = 5,X = 2,¢g = 1 andg = 1.

3 Numerical estimate of the wave speed  Analytical minimum wave speed
02 78 96
025 70 85
03 64 77

subject to the boundary conditions,
60 —k, y— —00, éo -0, J— +oo. (73)

The parametek can be removed from Equation (72) and boundary conditions (73) by appro-
priately scalingo, co andy Dropping hats and subscripts we obtain the equation,

Byy + COBy + ﬁ(l —-p) = 0, (74)
subject to the conditions,
B—>1 y— —oo, B—0, y— +oo. (75)

Equation (74) is the equation for the travelling-wave solution of Fisher's Equation [2] which
has been rigorously analysed by Kolmogosval. [3]. It is well known that a minimum-
wave-speed solution exists and this has been shown by Larson [16] to be the solution which
will develop from compact-support initial conditions. In terms of our original variables the
minimum wave speed is given as,

1/2

Con = 2 (i - x) + o). (76)
G()S

Table 1 shows that agreement is observed to within the expértédaccuracy between the

numerical and asymptotic solution.

This completes the asymptotic solution forg 1. We have shown that solutions which
consist of exponentially small corrections to the boundary conditions can be developed to give
a central region in which both = O(~%) andp = O(5~1). Within this region we obtain
the equation for the travelling-wave solution of the standard Fisher problem at leading order
which fixes a minimum wave speed.

4.3. QUBIC AUTOCATALYSIS WITH QUADRATIC INHIBITION (n = 2)

Solutions are required to Equations (32) and (33) with 2 subject to boundary conditions
(34) and (35), where is defined as,

k=" _ o5 77)
€0

Figure 7 shows a plot of wave speed vs time for three different valués biese results
indicate that the final wave speed is@f5~') hence we pose an expansion of the form,

c= % +c1+0(D). (78)
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03

Figure 10. Schematic diagram showing the asymptotic structure of the travelling-wave solution for the-egse
Exponentially small terms have been denoted by e.s.t.

The structure of the smadl-asymptotic solution is shown schematically in Figure 10 and can
been seen to consist of three asymptotic regions. Behind the wavefront exponentially small
corrections to the boundary conditions are constructed. When developed these solutions show
the need for a further asymptotic region in which botlandp are 0(3~1). Ahead of the
wavefront, exponential corrections are again developed which again suggest a central region
of width O(8) in which a andp are of 0(3~1). The central region contains the equation for

the travelling-wave solution of the cubic Fisher problem at leading order. We now give a brief
description of the asymptotic structure.

Region t
Appropriate scalings require exponentially small corrections to the boundary conditions be-
hind the wave. These are,

a=2dloga=0(1), p=Ilog (g - B) =01, y=y=0(Q1). (79)
By posing suitable expansions we obtain, in terms of the unscaled variables, the expansions,
vy C1Vy
= A - ——](1 1
o ®) eXp< 3 (2\)“0)) ( + o( )), (80)
k vy C1Vy
= -—A = = 1+o0(1 1
b =3 (S)eXp( 5 (2\)+CO)+>( +o( )), (81)

2 2
co Vet 4k
e 82
>t (82)
andA(d) is a constant of integration. Non-uniformities occur when,

d 1

Vv =
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Region III:
We now construct a solution in the region ahead of the reaction front. To obtain balances at
leading order we choose the scalings,

&:a—%:O(l), B=p=0(, y:%:om. (84)
In terms of unscaled variables we obtain,

o = g + 20 — a(d)eo/? (85)

B = a(®)e (86)

From these expansions we observe that non-uniformities will occuras—oo in particular
when,

y=—2iog [i} , (87)

Again, this suggests a central region of wid8) in which botha andp are of O (571).

Region It
This central region matches to region has> —oo and to region lll a3 — oco. Appropriate
scalings are,

G=sa=0(1), p=sp=0(1) and §= y;yo

which when substituted in the governing equations give the leading-order balances,

= 0(D), (88)

Gio + Po = , (89)

o5 + cofios — doflo. = 0. (90)
Elimination of g gives the second-order equation,

Boss + cobos + Ba(k — Po) = 0 (91)
subject to the boundary conditions,

Bo— k, $—> —o0 Bo— 0, $ — oo. (92)

The parametek can be removed from Equation (91) and boundary conditions (92) by an
appropriate scaling and, dropping hats and subscripts, we obtain the equation,

Byy + coBy +B* (1 —B) =0 (93)
subject to the boundary conditions,
B—>1, y—>—0co, Pp—>0, y— o0 (94)

Equation (93) is the equation for the travelling-wave solution of the cubic Fisher problem and
has been studied extensively by Gray, Showalter and Scott [17], Britton [18, pp. 102-108] and
Billingham and Needham [19].
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Table 2. Comparison of the analytical minimum wave speed and the numerical
estimate for the case= 2 withp =5, =1,¢g=1andg =1.

3 Numerical estimate of the wave speed  Analytical minimum wave speed
01 313 3.9
0-15 206 2.2
0.2 150 16-3

As in the last section we would expect the numerical solution of the full initial-boundary-
value problem to agree with the analytical prediction for the minimum wave speed. In terms
of the original variables this is given as,

1/

Crin 7 (603 zx) +0(Q). (95)

Table 2 shows that agreement between the numerical and asymptotic solution is observed to
within the expected) (1) accuracy.

At this point we note that an alternative region Ill can be constructed in whiehO (1).

In this case we obtain solutions farandp which grow like /(y — yo) asy — yg, where

yo IS a constant which can be fixed by matching. This form of solution matches to the non-
minimum wave speed cubic Fisher solution in region Il and illustrates an important difference
between the solutions in the cases of quadratic and cubic autocatalysis. In the quadratic case
all travelling wave solutions decay exponentially ahead of the wave. In contrast, for the case
of cubic autocatalysis, only the minimum wave speed decays exponentially, all other solutions
decaying algebraically as — oo. The details of this alternative region have been omitted as

we expect the large-time solution to have the minimum wave speed.

This completes the asymptotic solution #or« 1. We have constructed a three-region
solution by developing correction terms to the boundary conditions. The central region has
width of O(3) and botha = O (371) andp = O(3~1). Within this region we obtain the cubic
Fisher problem at leading order and this fixes a minimum wave speed.

5. Conclusion

We have studied the model reaction scheme for the cases1 and n = 2 allowing all

the chemical species to diffuse in one-dimensional slab geometry. Fully numerical solutions
have been given for both cases which are found to display similar features. Clock-reaction
behaviour was found to be characterised by a very rapid growth of the autocatalyst in a thin
region centred about the origin. At the end of the induction period a growing accelerating
reaction-diffusion front was evolved. This was then seen to develop into a travelling-wave at
constant speed.

Large-time constant-speed travelling-wave solutions have been constructed for both the
cases: = 1 andn = 2 by means of small asymptotics. Four regions were required for the
casen = 1 to describe the full travelling-wave solution. In the central asymptotic region it
was found that the leading-order problem reduced to the Fisher equation, hence showing the
existence of a family of travelling-wave solutions above a minimum wave speed. For the case
n = 2 only three asymptotic regions were required. This time the central region was found
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to contain the cubic Fisher problem at leading order, again fixing a minimum wave speed. In
both cases the asymptotic prediction of the wave speed agreed well with that of the numerical
solution.
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