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The evolution of travelling waves from chemical-clock reactions
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Abstract. A clock-reaction is a chemical reaction which gives rise to an initial induction period before a significant
change in concentration of one of the chemical species occurs. In this paper the development of travelling waves
from a particular class of inhibited autocatalytic clock-reactions is analysed. The numerical solutions show that,
after the induction period, a propagating reaction-diffusion front is initiated. This front is seen to accelerate initially
and then to become a constant-speed travelling wave. An asymptotic analysis of the large-time travelling-wave
behaviour is given and from this it is possible to fix a minimum wave speed. The asymptotic predictions of the
wave speed are found to agree well with those of the numerical solution.
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1. Introduction

Propagating reaction-diffusion fronts were first considered by Luther [1] over 80 years ago and
a mathematical formulation was first carried out by Fisher [2] and analysed in more detail by
Kolmogorovet al. [3]. Since the work of Merkin and Needham [4] on a simple autocatalytic
chemical system much research has been published relating to the development of travelling
waves. In this paper we analyse the development, in an unstirred medium, of a class of reaction
schemes which is known to give rise to clock-reaction behaviour and are able to demonstrate
the existence of travelling waves.

A reaction is regarded as displaying clock characteristics if, after the initial mixing, a sig-
nificant induction period is observed before a rapid change in one of the product or reactant
concentrations occurs. Such reactions often give rise to observable phenomena at the end
of the induction period. Examples of clock-reactions include the arsenic(III) sulfide clock-
reaction [5], the formaldehyde clock-reaction [6], the iodine bisulphate clock [7] and the
hydration of carbon dioxide [8]. In this paper we consider two mechanisms which can give
rise to clock-reaction behaviour. The first is simple autocatalysis, which can be described as
an induction reaction. An example of such a scheme is,

A+ nB −→ (n+ 1)B, ratekabn, (1)

where lower-case letters denote the respective chemical concentrations andk is a reaction-
rate constant. Examples of solution-phase reactions which are thought to be well modelled by
cubic autocatalysis are the iodate-arsenous acid reaction [9] and the iodine-bisulphate clock-
reaction [10, pp. 54–56]. Another mechanism which can lead to clock-reaction behaviour
is,

P −→ B, ratek0p,

B + C −→ D, ratek1bc,
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which can be described as an inhibition reaction. The clock chemical, B, is supplied to the
system via the decay of the precursor chemical P. An inhibitor chemical, C, reacts with
the clock chemical limiting its concentration. Once the inhibitor chemical is consumed the
concentration of the clock chemical starts to increase. This system has been analysed mathe-
matically in a well stirred situation by Billingham and Needham [11]. Examples of reactions
which are thought to be well modelled by this mechanism are the photosynthesis of hydrogen
chloride inhibited by ammonia and the polymerisation of vinyl acetate by benzoquinone [12].

In this paper we analyse the behaviour of the system,

P −→ A, ratek0p, (2)

A+ nB −→ (n+ 1)B, ratek1ab
n, (3)

mB + C −→ D, ratek2b
mc, (4)

for the casesn = m = 1,2. This system was first analysed by Billingham and Needham [13]
who assumed the decay of the precursor to be negligible. Using asymptotic methods, they
were able to obtain expressions for the length of the induction period in each case. Preeceet al.
[14] extended this work to allow for the consumption of the precursor chemical. They obtained
modified expressions for the induction period and showed that clock-reaction behaviour was
only observed within certain parameter limits.

In the first part of this paper numerical solutions are presented which show that, when a
clock-reaction is initiated with localised initial conditions, the rapid growth in concentration
of autocatalyst sets up a propagating reaction-diffusion front. After an initial transient phase
in which the reaction front accelerates, a constant-speed travelling wave is seen to develop.
Using asymptotic methods, we construct a large-time travelling-wave solution for the cases
n = m = 1,2 and are able to fix a minimum wave speed in each case. Our asymptotic
predictions of wave speed are found to agree well with those of the numerical solution.

2. Mathematical formulation

We formulate the problem forn = m = 1 or 2 settingm = n and choose to study the case of
one-dimensional slab geometry with the diffusion coefficients of the chemical species equal.
From reaction scheme (2), (3), (4) we obtain the partial differential equations,

∂p

∂t
= D

∂2p

∂x̄2
− k0p, (5)

∂a

∂t
= D

∂2a

∂x̄2
+ k0p − k1ab

n, (6)

∂b

∂t
= D

∂2b

∂x̄2
+ k1ab

n − nk2b
nc, (7)

∂c

∂t
= D

∂2c

∂x̄2
− k2b

nc, (8)

which are to be solved subject to the initial conditions,

p(x̄,0) = p0,

a(x̄,0) = 0,

b(x̄,0) =
{
b0 x̄ ≤ |l|
0 x̄ > |l|, (9)
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c(x̄,0) = c0.

These conditions describe an initially uniform concentration of precursor and inhibitor chem-
ical and an initial top hat distribution of the autocatalyst of half widthl. We impose no flux
boundary conditions on all chemical species at infinity. As no spatial variation will occur in
the precursor concentration, Equation (5) can be integrated to give

p = p0e−k0t . (10)

We define dimensionless variables as

α = a/b0, β = b/b0, γ = c/b0, x̄ =
(
k1b

n
0

D

)1/2

x, τ = k1b
n
0t, (11)

and Equations (6), (7) and (8) reduce to

∂α

dτ
= ∂2α

∂x2
+ µe−ε0δτ − αβn, (12)

∂β

dτ
= ∂2β

∂x2
+ αβn − n

δ
βnγ, (13)

∂γ

dτ
= ∂2γ

∂x2
− 1

δ
βnγ, (14)

where the parametersε0, δ andµ are defined as

ε = k0

k1b
n
0

, δ = k1

k2b0
, µ = εP0, with P0 = p0

b0
. (15)

These equations must be solved subject to the initial conditions

α(x,0) = 0,

β(x,0) =
{

1 x < |ξ|
0 x > |ξ|, (16)

γ(x,0) = λ,

where,

λ = c0

b0
, ξ =

(
D

k1b
n
0

) 1
2

l. (17)

P0 andλ are the dimensionless initial concentrations ofP andC, respectively. The parameters
ε and 1/δ are measures of the reaction rate of steps (2) and (4), respectively, relative to the rate
of the autocatalytic step (3). The diffusion coefficient has been scaled out of the governing
equations and we have retained the imposed length scale in the initial conditions via the para-
meterξ. It has been shown by Billingham and Needham [13] that in a well stirred environment
the length of the induction period is ofO(δ−1) for the casesn = 1,2. We choose to consider
the smallδ situation, in which

ε = ε0δ ε0 = O(1) as δ→ 0 with µ = O(1). (18)

This ensures that the effect of precursor consumption is significant at the time of initiation of
the reaction-diffusion front and produces interesting phenomena which are described in the
next section.
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3. Numerical solution

We now present a numerical solution of Equations (12), (13) and (14) for the casesn = 1
andn = 2. We need consider only the regionx ≥ 0 as we have imposed initial conditions
which are symmetric aboutx = 0. To solve the equations we apply the boundary conditions
∂α/∂x = ∂β/∂x = ∂γ/∂x = 0 atx = 0 and we note that there will be another symmetrically
disposed solution in the regionx ≤ 0. We apply no flux boundary conditions at some large
value of x, typically x = 500, as the system will tend to its unreacted spatially uniform
state at large distances from the origin. The numerical scheme used is the method of lines.
We discretise inx by replacing the spatial derivatives with second order central-difference
approximations. This gives the three sets of ordinary differential equations,

∂αi

∂τ
= 1

(1x)2

[
αi+1− 2αi + αi−1

]+ µe−ε0δτ − αiβ
n
i , (19)

∂βi

∂τ
= 1

(1x)2

[
βi+1 − 2βi + βi−1

]+ αiβ
n
i −

m

δ
βmi γi , (20)

∂γi

∂τ
= 1

(1x)2

[
γi+1− 2γi + γi−1

]− 1

δ
βmi γi , (21)

for i = 0,1,2,3, ..., N and whereαi, βi andγi represent the values ofα, β andγ at timeτ

and distancei1x from the origin. The outer boundary conditions are given asαN−1 = αN+1,
βN−1 = βN+1, γN−1 = γN+1 and similarly the boundary conditions at the origin areα−1 = α1,
β−1 = β1, γ−1 = γ1. To solve the above set of coupled nonlinear ordinary differential equa-
tions we used the NAG DO2BBF fourth-order Runge Kutta scheme. A spatial step size of
1x = 0·025 was used and the Runge-Kutta scheme had a variable step size. It was necessary
to use a scheme which was fourth-order accurate in time to capture the rapid growth in concen-
tration, characteristic of clock-reaction behaviour. When the spatial step size was halved the
results remained consistent to within the excepted accuracy of the scheme. The outer boundary
conditions were applied at large distances from the origin so that the propagating wave profile
could be given sufficient time to develop.

The solutions for the casesn = 1 andn = 2 display very similar characteristics and
so we present the two sets of results together. Figure 1 shows how the concentration of the
autocatalyst varies during the early stages of the reaction. Atτ = 0 the concentration of
the autocatalyst,β, is zero everywhere apart from a unit step function of half widthξ about
the origin. As the reaction proceeds, diffusion smooths out the initial step function in the
neighbourhood ofx = ξ and a spatially uniform decay occurs in the vicinity of the origin.
The autocatalyst is consumed because it reacts with the inhibitor chemical. At later times the
distinction is lost between the region of spreading and that of spatially uniform decay. The
autocatalyst continues to decrease in concentration and remains monotonically decreasing
from its maximum at the origin to zero at infinity.

We now enter the induction period where the autocatalyst concentration remains small and
inhibitor from outside the region|x| < ξ diffuses inwards to replace consumed inhibitor.
The concentrationα continues to increase everywhere because of the decay of the precursor
chemical. At some time later the autocatalyst concentration stops decreasing and starts to
grow. Inhibitor chemical is consumed in the region around the origin and there is then a very
rapid growth in the concentrationβ and a corresponding decrease in the concentrationα. The
rapid growth in autocatalyst concentration is illustrated in Figure 2.
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Figure 1. Initial decay of the autocatalyst for the casen = 2 with µ = 5, λ = 1, ε0 = 1, ξ = 1 andδ = 0·2.

Figure 2. Rapid growth of the autocatalyst for the casen = 2 with µ = 5, λ = 1, ε0 = 1, ξ = 1 andδ = 0·2.

At approximatelyτ = 5·9 we begin to observe the development of a wave indicated by a
spatially uniform region in the vicinity of the origin followed by a sharp decay inβ. Behind the
profile we find that the concentration of the inhibitor chemical and chemical A have decayed
to become very small.

The evolution of the wave profile for the casen = 2 is shown in Figure 3. For reasons
of clarity we have shown only the autocatalyst concentrations. The wave profile is observed
to both propagate away from the origin and grow as time increases. The growth corresponds
to an increase in the concentration of the autocatalyst behind the wave and an increase in the
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Figure 3. The evolution of the reaction-diffusion front for the casen = 2 with µ = 5, λ = 1, ε0 = 1, ξ = 1 and
δ = 0·2.

concentration of A in front of the wave. The increase inα in front of the wave is due to the
decay of the precursor and behind the wave A reacts with B via autocatalysis to produce more
B, henceβ also increases. Once the precursor chemical has decayed fully, the growth of the
wave stops and we find that the wavefront travels the same distance during each period of four
time units, indicating that it is travelling with constant speed.

Figures 4 and 5 show the structure of fully developed travelling-wave profiles for the cases
n = 1 andn = 2, respectively. Behind the wavefront all the inhibitor has been consumed and
the system is in a fully reacted state. Ahead of the wavefront the solution is in an unreacted
state withβ = 0, γ = λ andα being a spatially uniform constant which tends towardsµ/(ε0δ)

as the decay of the precursor continues. All the reaction processes are taking place in the
centred region whose boundary is propagating away from the origin. We note that the width
of the region for the casen = 1 is considerably larger than for the casen = 2.

To investigate the speed of the wave profile it was necessary to determine the position
of the front at each time step. This was defined to be the value ofx at which∂β/∂x took
its minimum value. By considering the position of the wavefront at timeτ and the position
two time increments earlier,τ − 21τ, the wave speed was calculated via a central-difference
approximation. A value of1τ = 0·25 was used throughout. The results for the casesn = 1
andn = 2 are shown in Figures 6 and 7, respectively.

The intersection of the curve with the horizontal axis marks the end of the induction period
and there is then a sharp jump associated with the initiation of the reaction-diffusion front.
The wave speed is then seen to increase to its maximum value.

For the casen = 1 the numerical results suggest that the final steady wave speed varies
like δ−1/2 but for the casen = 2 the they suggest the final wave speed to vary likeδ−1. In
the asymptotic analysis we show that these assumptions must be made for us to construct
asymptotic solutions.



The evolution of travelling waves from chemical-clock reactions373

Figure 4. Travelling-wave profile for the casen = 1 with µ = 5, λ = 2, ε0 = 1, ξ = 1 and δ= 0·2.

We note that the numerical results indicate that a constant-speed travelling-wave is ob-
served only once the precursor has fully decayed. This implies that the concentration of
chemical A ahead of the wave is the factor which controls the speed of the wave. Such results
have also been found by Merkin and Needham [15] who studied a similar system which had
a decay step instead of an inhibition step.

4. Travelling-wave analysis

After initiation of the reaction-diffusion front the numerical solution suggests that the govern-
ing equations will admit a solution of the form,

y = x − σ(τ). (22)

For small times after the end of the induction period, Figure 3 indicates thatσ = O(τp),
wheren > p. Indeed, it has been shown by Merkin and Needham [15] that, for a cubic
autocatalytic system which has a decay step rather than an inhibition step, the wavefront is an
O(τ2) distance away from the origin when the precursor chemical is assumed to decay slowly.
Further investigation shows that the governing equations have a constant-speed travelling-
wave solution when the precursor concentration become small, that is thatσ = O(τ) when
e−ε0δτ � 1. In this limit both the concentration of chemical A ahead of the front and the
concentration of the autocatalyst behind the front become constant, as shown in Figures 4 and
5. We now analyse the behaviour of the system in this limit and fix the similarity variabley

as,

y = x − cτ, (23)

wherec is the constant speed of the propagating reaction-diffusion front.
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Figure 5. Travelling-wave profile for the casen = 2 with µ = 5, λ = 1, ε0 = 1, ξ = 1 and δ= 0·2.

4.1. FORMULATION OF THE TRAVELLING-WAVE PROBLEM

If we neglect the input of A from the precursor chemical and apply the change of variables
(23) then Equations (12), (13) and (14) become,

αyy + cαy − αβn = 0, (24)

βyy + cβy + αβn − 1

δ
βnγ = 0, (25)

γyy + cγy − n
δ
βnγ = 0, (26)

where subscripty denotes differentiation with respect toy, the travelling-wave coordinate.
For the purpose of this analysis we assume that the parametersλ andµ are ofO(1). The
boundary conditions ahead of the wave are those of the unreacted state: there is no autocatalyst
present, the concentration of the inhibitor is constant andα has grown to its maximum value
via precursor decay so that,

α→ µ

ε0δ
, β→ 0, γ→ λ, (27)

asy → ∞. Figures 4 and 5 show fully developed constant-speed travelling waves. It can
be seen that ahead of the travelling waves, condition (27) is satisfied and that behind the
wavefronts both the concentrationsα andγ are small, possibly zero, andβ takes a constant
value. If we now consider the variableφ defined as,

φ = α+ β− nγ, (28)

then addition of Equations (24), (25) and (26) showsφ to satisfy the ordinary differential
equation,

φyy + cφy = 0. (29)
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Figure 6. Wave Speed as a function of time for the casen = 1 with µ = 5, λ = 2, ε0 = 1, ξ = 1 and
δ = 0·2, 0·25, 0·3

Applying the boundary conditions asy →∞ we obtain,

φ = µ

ε0δ
− nλ. (30)

Equations (24), (25) and (26) show that for steady-state conditions bothα andγ must be zero
for β non-zero, hence from (28) and (30) we deduce the conditions behind the wave to be,

α→ 0, β→ µ

ε0δ
− nλ, γ→ 0, (31)

asy → −∞. We are now able to eliminateγ from Equation (25) and thus obtain the fourth-
order system,

αyy + cαy − αβn = 0, (32)

βyy + cβy + αβn − n
δ
βn
(

α+ β− k
δ

)
= 0, (33)

subject to the boundary conditions,

α→ k

δ
+ nλ, β→ 0, y →∞, (34)

α→ 0, β→ k

δ
, y →−∞, (35)

where

k = µ

ε0
− δnλ. (36)

As this system is four dimensional it is difficult to use phase-space techniques. In the fol-
lowing sections we present asymptotic solutions valid forδ � 1 for both cases. To construct
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Figure 7. Wave speed as a function of time for the casen = 2 with µ = 5, λ = 1, ε0 = 1, ξ = 1 and
δ = 0·1, 0·15, 0·2.

these solutions we use information from the numerical solution of the initial-boundary-value
problem to pose suitable expansions for the wave speed.

4.2. QUADRATIC AUTOCATALYSIS WITH LINEAR INHIBITION (n = 1)

Solutions are required to Equations (32) and (33) withn = 1 subject to boundary conditions
(34) and (35), wherek is defined as,

k = µ

ε0
− δλ. (37)

The results in Figure 6 suggest that the final wave speed is ofO(δ− 1
2 ), hence we pose an

expansion of the form,

c = c0

δ1/2
+ c1 + o(1). (38)

The structure of the small-δ asymptotic solution is shown schematically in Figure 8 and can
been seen to consist of four asymptotic regions. Behind the wavefront, exponentially small
corrections to the boundary condition are constructed. When developed, these solutions show
the need for a further asymptotic region in which bothα andβ are ofO(δ−1). Consideration of
the system ahead of the wave also shows corrections to the boundary condition to be exponen-
tially small. A further asymptotic region is then required to link these solutions into the central
asymptotic region, region II, in which bothα andβ are ofO(δ−1). This central region has
width ofO(δ

1
2 ) and contains the equation for the travelling-wave solution the Fisher problem

at leading order. We now give a description of the asymptotic structure of the full solution.
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Figure 8. Schematic diagram showing the asymptotic structure of the travelling-wave solution for the casen = 1.
Exponentially small terms have been denoted by e.s.t.

Region I:
For consistent asymptotic expansions to be developed we require exponentially small correc-
tions to boundary conditions (35). Appropriate scalings are thus,

ᾱ = δ
1
2 logα = O(1), β̄ = δ

1
2 log

(
k

δ
− β

)
= O(1), y = ȳ = O(1), (39)

and by assuming appropriate expansions we obtain, in terms of the unscaled variables, the
solutions

α = A(δ)exp

(
νy

δ
1
2

− c1νy

2ν+ c0

)(
1+ o(1)

)
, (40)

β = k

δ
− A(δ)exp

(
νy

δ
1
2

− c1νy

2ν+ c0

)(
1+ o(1)

)
, (41)

whereν is given by,

ν = −c0

2
+
√
c2

0 + 4k

2
, (42)

andA(δ) is a constant of integration. Expansion (41) becomes non-uniform when the expo-
nentially small term grows to become ofO(δ−1). This occurs when,

y = δ1/2

ν
log

(
1

δA(δ)

)
, (43)

and suggests that a new asymptotic region is required in which bothα andβ are ofO(δ−1).
We now construct a solution in the region ahead of the reaction front.

Region IV:
It is not immediately obvious what form the scalings should take for this region so we pose an
asymptotic expansion of the form,

α = k

δ
+ λ+ α̃+ · · · , β = β̃+ · · · , (44)
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with y = ỹ = O(1) and wherẽα� 1 andβ̃� 1. If we now substitute in Equations (32) and
(33) and linearise we obtain,

α̃ỹỹ +
( c0

δ1/2
+ c1

)
α̃ỹ −

(
k

δ
+ λ

)
β̃ ∼ 0, (45)

β̃ỹỹ +
( c0

δ1/2
+ c1

)
β̃ỹ +

(
k

δ
+ λ

)
β̃− λ

δ
β̃ ∼ 0. (46)

Equation (46) has a solution of the form,

β̃ ∼ b̃1(δ)exp

(
θ+ỹ
δ1/2

)
+ b̃2(δ)exp

(
θ−ỹ
δ1/2

)
, (47)

whereb̃1 andb̃2 are gauge functions and,

θ± = 1

2

(
−c0±

√
c2

0 − 4(k − λ)

)
. (48)

Substituting this result in Equation (45) and solving we have,

α̃ ∼ ã1(δ)+ ã2(δ)exp

(−c0ỹ

δ1/2

)

+

(
k

δ
+ λ

)
b̃1(δ)exp

(
θ+ỹ
δ1/2

)
(

θ2+
δ
+ c0θ+

δ

) +

(
k

δ
+ λ

)
b̃2(δ)exp

(
θ−ỹ
δ1/2

)
(

θ2−
δ
+ c0θ−0

δ

) .

(49)

We note that the gauge functionsã1(δ), ã2(δ), b̃1(δ) andb̃2(δ) are completely undetermined at
present. Consideration of Equation (49) shows that whenỹ = O(δ1/2) expansions (44) may
become non-uniform. We now choose to examine the behaviour of the solution in this limit
by considering the scaled variable,

ỹ = δ1/2y̆. (50)

Rewriting the governing equations in terms of the variabley̆ we obtain,

αy̆y̆

δ
+
( c0

δ1/2
+ c1

) αy̆

δ1/2
− αβ = 0, (51)

βy̆y̆

δ
+
( c0

δ1/2
+ c1

) βy̆

δ1/2
+ αβ− β

δ

(
α+ β− k

δ

)
= 0. (52)

If we now pick all the gauge functions,ã1(δ), ã2(δ), b̃1(δ) andb̃2(δ), to beO(1), then we find
that appropriate expansions are,

α = k

δ
+ ᾰ+ o(1), β = β̆+ o(1). (53)

To examine these new scalings we introduce a further asymptotic region.
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Region III
Again the exact form of the scalings is not clear at present so we pose expansions (53) and
scaley as,

y = δ1/2y̆. (54)

Equations (32) and (33) become, at leading order,

ᾰy̆y̆ + c0ᾰy̆ − kβ̆ = 0, (55)

β̆y̆y̆ + c0β̆y̆ + kβ̆− β̆(ᾰ+ β̆) = 0. (56)

These equations admit solutions of the form (47) and (49) and hence match with the solutions
in region IV asy̆ → ∞. It is not possible to obtain fully analytical solutions of Equations
(55) and (56) valid for all̆y, so we try to obtain the behaviour of the system asy̆ → −∞.
Equations (55) and (56) linearise if we chooseᾰ = −β̆ and the resulting system is easily
solved to give,

ᾰ = −b̆1eζ+ y̆ − b̆2eζ− y̆ , (57)

β̆ = b̆1eζ+ y̆ + b̆2eζ− y̆ , (58)

where,

ζ± = −1

2

(
c0±

√
c2

0 − 4k

)
. (59)

We now show, via a numerical integration, that this is the behaviour of Equations (55) and
(56) asy̆ → −∞. We accomplished the integration by discretising the two equations with
respect toy̆ and then solving the resulting set of nonlinear equations using the NAG routine
C05NBF. To obtain boundary conditions asy̆ → ∞ we use the matching conditions from
region IV and fix,

ᾰ = λ, β̆ = 0, (60)

hence we neglect terms which are exponentially small. Asy̆ → −∞ we ensure that the
solution is of the linearised form discussed above and fix,

ᾰ = −eζ+ y̆ − b̆2eζ− y̆ , (61)

β̆ = eζ+ y̆ + b̆2eζ− y̆ . (62)

The travelling-wave solution is invariant under a shift in the travelling-wave coordinate,y,
so we can set̆b1 = 1 for the purpose of our numerical solution. Different values of the
parameters were used, within the parameter regimec0 > 2

√
k which ensures thatζ± is real,

and the scheme was found to converge each time. Changing the point at which the solution
was truncated had no effect on the overall solution. Figure 9 shows such a solution of Equa-
tions (55) and (56) subject to the boundary conditions described above. It can be observed that
ᾰ andβ̆ decay from being exponentially large asy̆ →−∞ to becomeλ and 0, respectively, as
y̆ →∞. We conclude that the linearised behaviour of Equations (55) and (56) is the behaviour
asy →−∞. In terms of the original variables these linearised solutions are written as,

α ∼ k − b̆1eζ+y/δ1/2 − b̆2eζ−y/δ1/2
, (63)

β ∼ b̆1eζ+y/δ1/2 + b̆2eζ−y/δ1/2
. (64)
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Figure 9. Numerical solution of Equations (55) and (56).

Expansion (63) becomes non-uniform asy →−∞ in particular when,

y̆ = −δ1/2

ζ+
logδ. (65)

This suggests a new region in whichα andβ areO(δ−1).

Region II:
This region is the central region and matches to region III asŷ →∞ and region I aŝy → −∞.
Appropriate scalings are,

α̂ = δα = O(1), β̂ = δβ = O(1), ŷ = y − y0(δ)

δ1/2
= O(1). (66)

For consistent matchingy0(δ) must be the same when evaluated in region I and in region III,
giving the relation,

y0(δ) = −δ1/2

ν
log [δA(δ)] = −δ1/2

ζ+
logδ, (67)

must be satisfied. Under scalings (66) Equations (32) and (33) become,

α̂ŷŷ +
(
c0+ δ1/2c1

)
α̂ŷ − α̂β̂ = 0, (68)

β̂ŷŷ +
(
c0+ δ1/2c1

)
β̂ŷ + α̂β̂− β̂

(
α̂

δ
+ β̂

δ
− k

δ

)
= 0, (69)

which at leading order take the form,

α̂0ŷŷ + c0α̂0ŷ − α̂0β̂0 = 0, (70)

α̂0+ β̂0 = k. (71)

Elimination ofα̂0 gives the two-dimensional system,

β̂0ŷŷ + c0β̂0ŷ − β̂0

(
β̂0− k

)
= 0, (72)



The evolution of travelling waves from chemical-clock reactions381

Table 1. Comparison of the analytical minimum wave speed and the numerical
estimate for the casen = 1 with µ = 5, λ = 2, ε0 = 1 andξ = 1.

δ Numerical estimate of the wave speed Analytical minimum wave speed

0·2 7·8 9·6
0·25 7·0 8·5
0·3 6·4 7·7

subject to the boundary conditions,

β̂0→ k, ŷ →−∞, β̂0→ 0, ŷ →+∞. (73)

The parameterk can be removed from Equation (72) and boundary conditions (73) by appro-
priately scalingβ̂0, c0 andŷ Dropping hats and subscripts we obtain the equation,

βyy + c0βy + β(1− β) = 0, (74)

subject to the conditions,

β→ 1, y →−∞, β→ 0, y →+∞. (75)

Equation (74) is the equation for the travelling-wave solution of Fisher’s Equation [2] which
has been rigorously analysed by Kolmogorovet al. [3]. It is well known that a minimum-
wave-speed solution exists and this has been shown by Larson [16] to be the solution which
will develop from compact-support initial conditions. In terms of our original variables the
minimum wave speed is given as,

Cmin = 2

(
µ

ε0δ
− λ

)1/2

+O(1). (76)

Table 1 shows that agreement is observed to within the expectedO(1) accuracy between the
numerical and asymptotic solution.

This completes the asymptotic solution forδ � 1. We have shown that solutions which
consist of exponentially small corrections to the boundary conditions can be developed to give
a central region in which bothα = O(δ−1) andβ = O(δ−1). Within this region we obtain
the equation for the travelling-wave solution of the standard Fisher problem at leading order
which fixes a minimum wave speed.

4.3. CUBIC AUTOCATALYSIS WITH QUADRATIC INHIBITION (n = 2)

Solutions are required to Equations (32) and (33) withn = 2 subject to boundary conditions
(34) and (35), wherek is defined as,

k = µ

ε0
− 2δλ. (77)

Figure 7 shows a plot of wave speed vs time for three different values ofδ. These results
indicate that the final wave speed is ofO(δ−1) hence we pose an expansion of the form,

c = c0

δ
+ c1+ o(1). (78)
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Figure 10. Schematic diagram showing the asymptotic structure of the travelling-wave solution for the casen = 2.
Exponentially small terms have been denoted by e.s.t.

The structure of the small-δ asymptotic solution is shown schematically in Figure 10 and can
been seen to consist of three asymptotic regions. Behind the wavefront exponentially small
corrections to the boundary conditions are constructed. When developed these solutions show
the need for a further asymptotic region in which bothα and β areO(δ−1). Ahead of the
wavefront, exponential corrections are again developed which again suggest a central region
of width O(δ) in which α andβ are ofO(δ−1). The central region contains the equation for
the travelling-wave solution of the cubic Fisher problem at leading order. We now give a brief
description of the asymptotic structure.

Region I:
Appropriate scalings require exponentially small corrections to the boundary conditions be-
hind the wave. These are,

ᾱ = δ logα = O(1), β̄ = log

(
k

δ
− β

)
= O(1), y = ȳ = O(1). (79)

By posing suitable expansions we obtain, in terms of the unscaled variables, the expansions,

α = A(δ)exp

(
νy

δ
− c1νy

(2ν+ c0)

)(
1+ o(1)

)
, (80)

β = k

δ
− A(δ)exp

(
νy

δ
− c1νy

(2ν+ c0)
+
)(

1+ o(1)
)
, (81)

where

ν = −c0

2
+
√
c2

0 + 4k2

2
, (82)

andA(δ) is a constant of integration. Non-uniformities occur when,

y = δ

ν
log

(
1

δA(δ)

)
. (83)
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Region III:
We now construct a solution in the region ahead of the reaction front. To obtain balances at
leading order we choose the scalings,

α̃ = α− k
δ
= O(1), β̃ = β = O(1), ỹ = y

δ
= O(1). (84)

In terms of unscaled variables we obtain,

α = k

δ
+ 2λ− a(δ)e−c0y/δ, (85)

β = a(δ)e−c0y/δ. (86)

From these expansions we observe that non-uniformities will occur asy →−∞ in particular
when,

y = −δ

c
log

[
1

a(δ)

]
. (87)

Again, this suggests a central region of widthO(δ) in which bothα andβ are ofO(δ−1).

Region II:
This central region matches to region I asy →−∞ and to region III asy →∞. Appropriate
scalings are,

α̂ = δα = O(1), β̂ = δβ = O(1) and ŷ = y − y0

δ
= O(1), (88)

which when substituted in the governing equations give the leading-order balances,

α̂0+ β̂0 = k, (89)

α̂0ŷŷ + c0α̂0ŷ − α̂0β̂0
2 = 0. (90)

Elimination ofα̂0 gives the second-order equation,

β̂0ŷŷ + c0β̂0ŷ + β̂2
0(k − β̂0) = 0 (91)

subject to the boundary conditions,

β̂0→ k, ŷ →−∞ β̂0→ 0, ŷ →∞. (92)

The parameterk can be removed from Equation (91) and boundary conditions (92) by an
appropriate scaling and, dropping hats and subscripts, we obtain the equation,

βyy + c0βy + β2(1− β) = 0 (93)

subject to the boundary conditions,

β→ 1, y →−∞, β→ 0, y →∞. (94)

Equation (93) is the equation for the travelling-wave solution of the cubic Fisher problem and
has been studied extensively by Gray, Showalter and Scott [17], Britton [18, pp. 102–108] and
Billingham and Needham [19].
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Table 2. Comparison of the analytical minimum wave speed and the numerical
estimate for the casen = 2 with µ = 5, λ = 1, ε0 = 1 andξ = 1 .

δ Numerical estimate of the wave speed Analytical minimum wave speed

0·1 31·3 33·9
0·15 20·6 22·2
0·2 15·0 16·3

As in the last section we would expect the numerical solution of the full initial-boundary-
value problem to agree with the analytical prediction for the minimum wave speed. In terms
of the original variables this is given as,

cmin = 1√
2

(
µ

ε0δ
− 2λ

)
+O(1). (95)

Table 2 shows that agreement between the numerical and asymptotic solution is observed to
within the expectedO(1) accuracy.

At this point we note that an alternative region III can be constructed in whichy = O(1).
In this case we obtain solutions forα andβ which grow like 1/(y − y0) asy → y0, where
y0 is a constant which can be fixed by matching. This form of solution matches to the non-
minimum wave speed cubic Fisher solution in region II and illustrates an important difference
between the solutions in the cases of quadratic and cubic autocatalysis. In the quadratic case
all travelling wave solutions decay exponentially ahead of the wave. In contrast, for the case
of cubic autocatalysis, only the minimum wave speed decays exponentially, all other solutions
decaying algebraically asy →∞. The details of this alternative region have been omitted as
we expect the large-time solution to have the minimum wave speed.

This completes the asymptotic solution forδ � 1. We have constructed a three-region
solution by developing correction terms to the boundary conditions. The central region has
width ofO(δ) and bothα = O(δ−1) andβ = O(δ−1). Within this region we obtain the cubic
Fisher problem at leading order and this fixes a minimum wave speed.

5. Conclusion

We have studied the model reaction scheme for the casesn = 1 and n= 2 allowing all
the chemical species to diffuse in one-dimensional slab geometry. Fully numerical solutions
have been given for both cases which are found to display similar features. Clock-reaction
behaviour was found to be characterised by a very rapid growth of the autocatalyst in a thin
region centred about the origin. At the end of the induction period a growing accelerating
reaction-diffusion front was evolved. This was then seen to develop into a travelling-wave at
constant speed.

Large-time constant-speed travelling-wave solutions have been constructed for both the
casesn = 1 andn = 2 by means of smallδ asymptotics. Four regions were required for the
casen = 1 to describe the full travelling-wave solution. In the central asymptotic region it
was found that the leading-order problem reduced to the Fisher equation, hence showing the
existence of a family of travelling-wave solutions above a minimum wave speed. For the case
n = 2 only three asymptotic regions were required. This time the central region was found



The evolution of travelling waves from chemical-clock reactions385

to contain the cubic Fisher problem at leading order, again fixing a minimum wave speed. In
both cases the asymptotic prediction of the wave speed agreed well with that of the numerical
solution.
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